Prediction of Marshall Parameters of Modified Bituminous Mixtures Using Artificial Intelligence Techniques
نویسندگان
چکیده
منابع مشابه
Prediction of Marshall test results for polypropylene modified dense bituminous mixtures using neural networks
This study presents an application of neural networks (NN) for the prediction of Marshall test results for polypropylene (PP) modified asphalt mixtures. PP fibers are used to modify the bituminous binder in order to improve the physical and mechanical properties of the resulting asphaltic mixture. Marshall stability and flow tests were carried out on specimens fabricated with different type of ...
متن کاملSurface Tension Prediction of Hydrocarbon Mixtures Using Artificial Neural Network
In this study, artificial neural network was used to predict the surface tension of 20 hydrocarbon mixtures. Experimental data was divided into two parts (70% for training and 30% for testing). Optimal configuration of the network was obtained with minimization of prediction error on testing data. The accuracy of our proposed model was compared with four well-known empirical equations. The arti...
متن کاملOptimal Selection of Active Suspension Parameters Using Artificial Intelligence
In this paper, multi-objective uniform-diversity genetic algorithm (MUGA) with a diversity preserving mechanism called the ε-elimination algorithm is used for Pareto optimization of 5-degree of freedom vehicle vibration model considering the five conflicting functions simultaneously. The important conflicting objective functions that have been considered in this work are, namely, vertical accel...
متن کاملAccumulated strain prediction of polypropylene modified marshall specimens in repeated creep test using artificial neural networks
This study presents an application of artificial neural networks (ANN) for the prediction of repeated creep test results for polypropylene (PP) modified asphalt mixtures. Polypropylene fibers are used to modify the bituminous binder in order to improve the physical and mechanical properties of the resulting asphaltic mixture. Marshall specimens, fabricated with M-03 type polypropylene fibers at...
متن کاملSolar Flare M-class Prediction Using Artificial Intelligence Techniques
Currently, astronomical data have increased in terms of volume and complexity. To bring out the information in order to analyze and predict, the artificial intelligence techniques are required. This paper aims to apply artificial intelligence techniques to predict M-class solar flare. Artificial neural network, support vector machine and naïve bayes techniques are compared to define the best pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Transportation Science and Technology
سال: 2014
ISSN: 2046-0430
DOI: 10.1260/2046-0430.3.3.211